Pérez Fernández, Teresa Encarnación Author
A CLASS OF ORTHOGONAL FUNCTIONS GIVEN BY A THREE TERM RECURRENCE FORMULA
- Bracciali, C. F.
- McCabe, J. H.
- Perez, T. E.
- Ranga, A. Sri
MATHEMATICS OF COMPUTATION - 1/7/2016
- SJR Quartile: Q1
- JCR Impact Factor: 1.569 (2016)
- CiteScore: 4.3 (2020)
- SJR: 1.872 (2016
- SNIP: 1.677 (2016
- JCR 5-year Impact Factor: 1.604
- JCR Categories: MATHEMATICS, APPLIED
- SJR Categories: Algebra and Number Theory (Q1); Applied Mathematics (Q1); Computational Mathematics (Q1)
- Scopus
- ORCID
- Web of Science
A generating function for nonstandard orthogonal polynomials involving differences: the Meixner case
- Moreno-Balcazar, Juan J.
- Perez, Teresa E.
- Pinar, Miguel A.
RAMANUJAN JOURNAL - 1/5/2011
10.1007/s11139-010-9254-1 View source
- JCR Quartile: Q3 (2011)
- SJR Quartile: Q2
- JCR Impact Factor: 0.511 (2011)
- Category normalized Impact: 0.418 (2011)
- CiteScore: 1.7 (2020)
- SJR: 0.971 (2011
- SNIP: 1.316 (2011
- JCR 5-year Impact Factor: 0.684
- JCR Categories: MATHEMATICS
- SJR Categories: Algebra and Number Theory (Q2)
- Scopus
- ORCID
- Web of Science
A matrix Rodrigues formula for classical orthogonal polynomials in two variables
- María Álvarez de Morales
- Lidia Fernández Rodríguez
- Teresa Encarnacion Pérez Fernández
- Miguel A. Piñar
JOURNAL OF APPROXIMATION THEORY - 1/3/2009
- SJR Quartile: Q1
- JCR Impact Factor: 0.904 (2009)
- CiteScore: 1.5 (2020)
- SJR: 1.123 (2009
- SNIP: 1.259 (2009
- JCR 5-year Impact Factor: 1.015
- JCR Categories: MATHEMATICS
- SJR Categories: Applied Mathematics (Q1); Mathematics (miscellaneous) (Q1); Analysis (Q2); Numerical Analysis (Q2)
- Scopus
- ORCID
- Web of Science
An asymptotic result for Laguerre-Sobolev orthogonal polynomials
- Marcellan, F
- Meijer, HG
- Perez, TE
- Pinar, MA
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS - 18/12/1997
10.1016/s0377-0427(97)00179-9 View source
- CiteScore: 4.5 (2020)
- Scopus
- ORCID
- Web of Science
Approximation via gradients on the ball. The Zernike case
- Marriaga M.E.
- Pérez T.E.
- Piñar M.A.
- Recarte M.J.
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS - 1/10/2023
- JCR Impact Factor: 2.1 (2023)
- CiteScore: 5.4 (2022)
- SJR: 0.797 (2022
- SNIP: 1.459 (2022
- JCR 5-year Impact Factor: 2.1
- JCR Categories: MATHEMATICS, APPLIED
A semiclassical perspective on multivariate orthogonal polynomials
- Alvarez de Moralesa, Maria
- Fernandez, Lidia
- Perez, Teresa E.
- Pinar, Miguel A.
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS - 1/5/2008
10.1016/j.cam.2007.03.005 View source
- SJR Quartile: Q2
- CiteScore: 4.5 (2020)
- SJR: 0.853 (2008
- SNIP: 1.239 (2008
- SJR Categories: Applied Mathematics (Q2); Computational Mathematics (Q2)
- Scopus
- ORCID
- Web of Science
Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Laguerre type
- Meijer, HG
- Perez, TE
- Pinar, MA
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS - 15/5/2000
10.1006/jmaa.2000.6779 View source
- JCR Quartile: Q2 (2000)
- SJR Quartile: Q2
- JCR Impact Factor: 0.431 (2022)
- Category normalized Impact: 0.663 (2000)
- CiteScore: 2.5 (2020)
- SJR: 1.053 (2000
- SNIP: 1.16 (2000
- SJR Categories: Applied Mathematics (Q2); Analysis (Q3)
- Scopus
- ORCID
- Web of Science
Asymptotics of Sobolev orthogonal polynomials for coherent pairs of measures
- Martinez-Finkelshtein, A
- Moreno-Balcazar, JJ
- Perez, TE
- Pinar, MA
JOURNAL OF APPROXIMATION THEORY - 1/2/1998
10.1006/jath.1997.3123 View source
- JCR Quartile: Q2 (1998)
- JCR Impact Factor: 0.351 (2022)
- Category normalized Impact: 1.961 (1998)
- CiteScore: 1.5 (2020)
- Scopus
- ORCID
- Web of Science
Asymptotics of Sobolev orthogonal polynomials for Hermite coherent pairs
- Alfaro, M
- Moreno-Balcazar, JJ
- Perez, TE
- Pinar, MA
- Rezola, ML
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS - 1/8/2001
10.1016/s0377-0427(00)00639-7 View source
- JCR Quartile: Q2 (2001)
- SJR Quartile: Q2
- JCR Impact Factor: 0.533 (2022)
- Category normalized Impact: 0.384 (2001)
- CiteScore: 4.5 (2020)
- SJR: 0.734 (2001
- SNIP: 0.96 (2001
- SJR Categories: Applied Mathematics (Q2); Computational Mathematics (Q3)
- Dialnet
- Scopus
- ORCID
- Web of Science
Bernstein-Jacobi-type operators preserving derivatives
- David Lara-Velasco
- Teresa E. Pérez
COMPUTATIONAL & APPLIED MATHEMATICS - 1/7/2024
- CiteScore: 4.5 (2023)
- SJR: 0.646 (2023
- SNIP: 1.128 (2023
- Scopus
- ORCID
- Web of Science
This author has no books, chapters or theses.
GEGENBAUER-SOBOLEV ORTHOGONAL POLYNOMIALS
- MARCELLAN, F
- PEREZ, TE
- PINAR, MA
- Cuyt, A
NONLINEAR NUMERICAL METHODS AND RATIONAL APPROXIMATION II - 1994
Orthogonal polynomials associated with a nondiagonal Sobolev inner product with polynomial coefficients
- De Morales, MA
- Perez, TE
- Pinar, MA
- Ronveaux, A
- Jones, WB
- Ranga, AS
ORTHOGONAL FUNCTIONS, MOMENT THEORY, AND CONTINUED FRACTIONS - 1998
- ORCID
- Web of Science
Recent Trends on Two Variable Orthogonal Polynomials
- Fernandez, Lidia
- Marcellan, Francisco
- Perez, Teresa E.
- Pinar, Miguel A.
- AcostaHumanez, PB
- Marcellan, F
DIFFERENTIAL ALGEBRA, COMPLEX ANALYSIS AND ORTHOGONAL POLYNOMIALS - 2010
- JCR Quartile: Q4 (2010)
- Category normalized Impact: 0.522 (2010)
- ORCID
- Web of Science
Sobolev orthogonality and properties of the generalized Laguerre polynomials
- Perez, TE
- Pinar, MA
- Jones, WB
- Ranga, AS
ORTHOGONAL FUNCTIONS, MOMENT THEORY, AND CONTINUED FRACTIONS - 1998
- ORCID
- Web of Science
This author has no patents.
h index
Scopus: 12
Web of Science: 12
i10 index
Scopus: 18
Web of Science: 17
Author profiles
-
ORCID
-
Web of Science ResearcherID
-
Scopus Author ID
-
Dialnet id
Other identifiers
-
URI Datos BNE
-
ISNI
-
VIAF
Research projects at UAL
-
Acronym P11-FQM-07276Since: April 30, 2013Until: April 30, 2017Funded by: JUNTAFunding / grant amount: 239,478.30 EURRole: Investigador