Langseth, Helge Autor

Analysis of OREDA data for maintenance optimisation

  • Langseth H.
  • Haugen K.
  • Sandtorv H.

Reliability Engineering and System Safety - 1/1/1998

10.1016/s0951-8320(98)83003-2

Número de citas: 18 (Scopus)

Uncertainty bounds for a monotone multistate system

  • Langseth H.
  • Lindqvist B.

Probability in the Engineering and Informational Sciences - 1/12/1998

10.1017/s0269964800005179

Número de citas: 10 (Scopus)

Parameter learning in object-oriented Bayesian networks

  • Langseth H.
  • Bangsø O.

Annals of Mathematics and Artificial Intelligence - 1/12/2001

10.1023/a:1016769618900

Número de citas: 27 (Scopus)

The SACSO methodology for troubleshooting complex systems

  • Jensen F.
  • Kjærulff U.
  • Kristiansen B.
  • Langseth H.
  • Skaanning C.
  • Vomlel J.
  • Vomlelová M.
... Ver más Contraer

Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM - 1/9/2001

10.1017/s0890060401154065

Número de citas: 55 (Scopus)

Decision theoretic troubleshooting of coherent systems

  • Langseth H.
  • Jensen F.

Reliability Engineering and System Safety - 1/4/2003

10.1016/s0951-8320(02)00202-8

Número de citas: 25 (Scopus)
Open Access

Fusion of domain knowledge with data for structural learning in object oriented domains

  • Langseth H.
  • Nielsen T.

Journal of Machine Learning Research - 1/4/2004

10.1162/153244304773633852

Número de citas: 16 (Web of Science) 32 (Scopus)

Failure modeling and maintenance optimization for a railway line

  • Hokstad P.
  • Langseth H.
  • Lindqvist B.
  • Vatn J.

International Journal of Performability Engineering - 1/1/2005

Número de citas: 8 (Scopus)

Latent classification models

  • Langseth H.
  • Nielsen T.

Machine Learning - 1/6/2005

10.1007/s10994-005-0472-5

Número de citas: 10 (Web of Science) 13 (Scopus)

Competing risks for repairable systems: A data study

  • Langseth H.
  • Lindqvist B.

Journal of Statistical Planning and Inference - 1/5/2006

10.1016/j.jspi.2004.10.032

Número de citas: 33 (Scopus)

Classification using Hierarchical Naïve Bayes models

  • Langseth H.
  • Nielsen T.

Machine Learning - 1/5/2006

10.1007/s10994-006-6136-2

Número de citas: 47 (Web of Science) 62 (Scopus)

Applications of Bayesian networks in reliability analysis

  • Langseth H.
  • Portinale L.

Bayesian Network Technologies: Applications and Graphical Models - 1/12/2007

10.4018/978-1-59904-141-4.ch005

Número de citas: 7 (Scopus)

Bayesian networks in reliability: The good, the bad, and the ugly

  • Langseth H.

Advances in Mathematical Modeling for Reliability - 1/5/2008

Número de citas: 14 (Scopus)
Open Access

MPE Inference in Conditional Linear Gaussian Networks

  • Salmerón A.
  • Rumí R.
  • Langseth H.
  • Madsen A.
  • Nielsen T.

Symbolic and Quantitative Approaches To Reasoning With Uncertainty, Ecsqaru 2015 - 1/1/2015

10.1007/978-3-319-20807-7_37

Número de citas: 4 (Scopus)

Learning hybrid bayesian networks using mixtures of truncated basis functions. Aprendizaje de redes bayesianas híbridas con mixturas de funciones base truncadas

  • Inmaculada Pérez-Bernabé
  • Antonio Salmerón Cerdán
  • Helge Langseth

2015

Número de citas:
  • Dialnet
Open Access

Parameter estimation in mixtures of truncated exponentials

  • Langseth H.
  • Nielsen T.
  • Rumí R.
  • Salmerón A.

Proceedings of the 4th European Workshop on Probabilistic Graphical Models, PGM 2008 - 1/12/2008

Número de citas: 3 (Scopus)

Local-global-learning of naive Bayesian classifier

  • Zhong S.
  • Langseth H.

2009 4th International Conference on Innovative Computing, Information and Control, ICICIC 2009 - 1/12/2009

10.1109/icicic.2009.254

Número de citas: 2 (Scopus)
Open Access

Maximum Likelihood Learning of Conditional MTE Distributions

  • Langseth H.
  • Nielsen T.
  • Rumí R.
  • Salmerón A.

SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS - 27/8/2009

10.1007/978-3-642-02906-6_22

Número de citas: 10 (Web of Science) 14 (Scopus)
Open Access

Architectures integrating case-based reasoning and Bayesian networks for clinical decision support

  • Bruland T.
  • Aamodt A.
  • Langseth H.

IFIP Advances in Information and Communication Technology - 1/1/2010

10.1007/978-3-642-16327-2-13

Número de citas: 17 (Scopus)

Towards a more expressive model for dynamic classification

  • Zhong S.
  • Martínez A.
  • Nielsen T.
  • Langseth H.

Proceedings of the 23rd International Florida Artificial Intelligence Research Society Conference, FLAIRS-23 - 19/10/2010

Número de citas: 3 (Scopus)
Open Access

Parameter learning in MTE networks using incomplete data

  • Fernández A.
  • Langseth H.
  • Nielsen T.
  • Salmerón A.

The Fifth European Workshop on Probabilistic Graphical Models, Helsinki, Finland, 12/09/2010 - 1/12/2010

Número de citas: 4 (Scopus)

Extended abstract: Combining CBR and BN using metareasoning

  • Houeland T.
  • Bruland T.
  • Aamodt A.
  • Langseth H.

Frontiers in Artificial Intelligence and Applications - 1/1/2011

10.3233/978-1-60750-754-3-189

Número de citas: 1 (Scopus)

Extended abstract: A design for a tourist CF system

  • Lillegraven T.
  • Wolden A.
  • Kofod-Petersen A.
  • Langseth H.

Frontiers in Artificial Intelligence and Applications - 1/1/2011

10.3233/978-1-60750-754-3-193

Número de citas:

A hybrid CBR and BN architecture refined through data analysis

  • Bruland T.
  • Aamodt A.
  • Langseth H.

International Conference on Intelligent Systems Design and Applications, ISDA - 1/12/2011

10.1109/isda.2011.6121773

Número de citas: 4 (Scopus)

Inference in hybrid Bayesian networks with mixtures of truncated basis functions

  • Langseth H.
  • Nielsen T.
  • Rumí R.
  • Salmerón A.

Proceedings of the 6th European Workshop on Probabilistic Graphical Models, PGM 2012 - 1/12/2012

Número de citas: 11 (Scopus)

Este autor no tiene patentes.

Open Access

A Divide and Conquer Approach for Solving Structural Causal Models

  • Bjøru, Anna Rodum
  • Cabañas De Paz, Rafael
  • Langseth, Helge
  • Salmerón Cerdán, Antonio

12th International Conference on Probabilistic Graphical Models (PGM'2024) - 2024

Scopus: 18

Web of Science: 12

Scopus: 33

Web of Science: 18

Última actualización de los datos: 20/11/24 2:40
Próxima recolección programada: 23/11/24 3:00