Langseth, Helge Autor

The Multiquadric Kernel for Moment-Matching Distributional Reinforcement Learning

  • Killingberg L.
  • Langseth H.

Transactions on Machine Learning Research - 1/8/2023

Número de citas: 2 (Scopus)

Inference in hybrid Bayesian networks

  • Langseth H.
  • Nielsen T.
  • Rumí R.
  • Salmerón A.

RELIABILITY ENGINEERING & SYSTEM SAFETY - 1/10/2009

10.1016/j.ress.2009.02.027

Número de citas: 77 (Web of Science) 91 (Scopus)

A classification-based approach to monitoring the safety of dynamic systems

  • Zhong, Shengtong
  • Langseth, Helge
  • Nielsen, Thomas Dyhre

RELIABILITY ENGINEERING and SYSTEM SAFETY - 1/01/2014

10.1016/j.ress.2013.07.016

Número de citas: 5 (Web of Science) 5 (Scopus)

Analysis of OREDA data for maintenance optimisation

  • Langseth H.
  • Haugen K.
  • Sandtorv H.

Reliability Engineering and System Safety - 1/1/1998

10.1016/s0951-8320(98)83003-2

Número de citas: 21 (Scopus)

Bayesian networks in reliability

  • Langseth H.
  • Portinale L.

Reliability Engineering and System Safety - 1/1/2007

10.1016/j.ress.2005.11.037

Número de citas: 523 (Scopus)

Decision theoretic troubleshooting of coherent systems

  • Langseth H.
  • Jensen F.

Reliability Engineering and System Safety - 1/4/2003

10.1016/s0951-8320(02)00202-8

Número de citas: 25 (Scopus)

Learning similarity measures from data

  • Mathisen B.
  • Aamodt A.
  • Bach K.
  • Langseth H.

PROGRESS IN ARTIFICIAL INTELLIGENCE - 1/6/2020

10.1007/s13748-019-00201-2

Número de citas: 33 (Web of Science) 42 (Scopus)
Open Access

MAP inference in dynamic hybrid Bayesian networks

  • Ramos-López D.
  • Masegosa A.
  • Martínez A.
  • Salmerón A.
  • Nielsen T.
  • Langseth H.
  • Madsen A.
... Ver más Contraer

PROGRESS IN ARTIFICIAL INTELLIGENCE - 27/6/2017

10.1007/s13748-017-0115-7

Número de citas: 6 (Web of Science) 6 (Scopus)

Uncertainty bounds for a monotone multistate system

  • Langseth H.
  • Lindqvist B.

Probability in the Engineering and Informational Sciences - 1/1/1998

10.1017/s0269964800005179

Número de citas: 10 (Scopus)

Latent classification models for binary data

  • Langseth H.
  • Nielsen T.

Pattern Recognition - 1/11/2009

10.1016/j.patcog.2009.05.002

Número de citas: 8 (Web of Science) 9 (Scopus)

STATISTICAL MODELING AND INFERENCE FOR COMPONENT FAILURE TIMES UNDER PREVENTIVE MAINTENANCE AND INDEPENDENT CENSORING

  • Lindqvist B.H.
  • Langseth H.

Series on Quality, Reliability and Engineering Statistics Vol. 10: Modern Statistical and Mathematical Methods in Reliability - 1/1/2005

10.1142/9789812703378_0023

Número de citas: 3 (Scopus)

New Ideas in Ranking for Personalized Fashion Recommender Systems

  • Ramampiaro H.
  • Langseth H.
  • Almenningen T.
  • Schistad H.
  • Havig M.
  • Nguyen H.T.

Business and Consumer Analytics: New Ideas - 1/1/2019

10.1007/978-3-030-06222-4_25

Número de citas: 2 (Scopus)

Applications of Bayesian networks in reliability analysis

  • Langseth H.
  • Portinale L.

Bayesian Network Technologies: Applications and Graphical Models - 1/12/2007

10.4018/978-1-59904-141-4.ch005

Número de citas: 8 (Scopus)

Bayesian networks in reliability: The good, the bad, and the ugly

  • Langseth H.

Advances in Mathematical Modeling for Reliability - 1/5/2008

Número de citas: 14 (Scopus)

Learning hybrid bayesian networks using mixtures of truncated basis functions. Aprendizaje de redes bayesianas híbridas con mixturas de funciones base truncadas

  • Inmaculada Pérez-Bernabé
  • Antonio Salmerón Cerdán
  • Helge Langseth

2015

Número de citas: 0 (Dialnet)
  • Dialnet

Dynamic Bayesian modeling for risk prediction in credit operations

  • Borchani H.
  • Martínez A.
  • Masegosa A.
  • Langseth H.
  • Nielsen T.
  • Salmerón A.
  • Fernández A.
  • Madsen A.
  • Sáez R.
... Ver más Contraer

THIRTEENTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (SCAI 2015) - 1/1/2015

10.3233/978-1-61499-589-0-17

Número de citas: 4 (Web of Science) 4 (Scopus)
Open Access

Maximum Likelihood Learning of Conditional MTE Distributions

  • Langseth H.
  • Nielsen T.
  • Rumí R.
  • Salmerón A.

SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS - 27/8/2009

10.1007/978-3-642-02906-6_22

Número de citas: 10 (Web of Science) 15 (Scopus)
Open Access

Learning Conditional Distributions Using Mixtures of Truncated Basis Functions

  • Pérez-Bernabé I.
  • Salmerón A.
  • Langseth H.

SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2015 - 1/1/2015

10.1007/978-3-319-20807-7_36

Número de citas: 3 (Web of Science) 3 (Scopus)

Comparative study of event prediction in power grids using supervised machine learning methods

  • Hoiem K.W.
  • Santi V.
  • Torsater B.N.
  • Langseth H.
  • Andresen C.A.
  • Rosenlund G.H.

SEST 2020 - 3rd International Conference on Smart Energy Systems and Technologies - 1/9/2020

10.1109/sest48500.2020.9203025

Número de citas: 5 (Scopus)

Probability-based approach for predicting e-commerce consumer behaviour using sparse session data

  • Myklatun Ø.
  • Thorrud T.
  • Nguyen H.
  • Langseth H.
  • Kofod-Petersen A.

Proceedings of the International ACM Recommender Systems Challenge 2015 - 16/9/2015

10.1145/2813448.2813514

Número de citas: 0 (Scopus)

Inference in hybrid Bayesian networks with mixtures of truncated basis functions

  • Langseth H.
  • Nielsen T.
  • Rumí R.
  • Salmerón A.

Proceedings of the 6th European Workshop on Probabilistic Graphical Models, PGM 2012 - 1/12/2012

Número de citas: 13 (Scopus)

Parameter learning in MTE networks using incomplete data

  • Fernández A.
  • Langseth H.
  • Nielsen T.
  • Salmerón A.

Proceedings of the 5th European Workshop on Probabilistic Graphical Models, PGM 2010 - 1/12/2010

Número de citas: 4 (Scopus)

Parameter estimation in mixtures of truncated exponentials

  • Langseth H.
  • Nielsen T.
  • Rumí R.
  • Salmerón A.

Proceedings of the 4th European Workshop on Probabilistic Graphical Models, PGM 2008 - 1/12/2008

Número de citas: 3 (Scopus)

Prediction intervals: Split normal mixture from quality-driven deep ensembles

  • Salem T.S.
  • Langseth H.
  • Ramampiaro H.

Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, UAI 2020 - 1/1/2020

Número de citas: 14 (Scopus)

Towards a more expressive model for dynamic classification

  • Zhong S.
  • Martínez A.
  • Nielsen T.
  • Langseth H.

Proceedings of the 23rd International Florida Artificial Intelligence Research Society Conference, FLAIRS-23 - 19/10/2010

Número de citas: 3 (Scopus)

Este autor no tiene patentes.

Este autor no tiene informes ni otros tipos de publicaciones.

Scopus: 21

Web of Science: 12

Scopus: 44

Web of Science: 19

Última actualización de los datos: 31/05/25 13:13
Próxima recolección programada: 7/06/25 3:00