Langseth, Helge Autor
Inference in hybrid Bayesian networks
- Langseth H.
- Nielsen T.
- Rumí R.
- Salmerón A.
RELIABILITY ENGINEERING & SYSTEM SAFETY - 1/10/2009
- Cuartil JCR: Q1 (2009)
- Cuartil SJR: Q1
- Factor Impacto JCR: 1,908 (2009)
- Impacto Normalizado por Categoría: 2,242 (2009)
- CiteScore: 9,3 (2020)
- SJR: 1,142 (2009)
- SNIP: 2,571 (2009)
- Impacto JCR a 5 años: 2,305
- Categorías JCR: ENGINEERING, INDUSTRIAL
- Categorías SJR: Applied Mathematics (Q1); Industrial and Manufacturing Engineering (Q1); Safety, Risk, Reliability and Quality (Q1)
- Scopus
- ORCID
- Web of Science
A classification-based approach to monitoring the safety of dynamic systems
- Zhong, Shengtong
- Langseth, Helge
- Nielsen, Thomas Dyhre
RELIABILITY ENGINEERING and SYSTEM SAFETY - 1/01/2014
- Cuartil SJR: Q1
- Factor Impacto JCR: 2,41 (2014)
- CiteScore: 9,3 (2020)
- SJR: 1,419 (2014)
- SNIP: 2,616 (2014)
- Impacto JCR a 5 años: 2,693
- Categorías JCR: OPERATIONS RESEARCH & MANAGEMENT SCIENCE
- Categorías SJR: Applied Mathematics (Q1); Industrial and Manufacturing Engineering (Q1); Safety, Risk, Reliability and Quality (Q1)
- Scopus
- ORCID
- Web of Science
Analysis of OREDA data for maintenance optimisation
- Langseth H.
- Haugen K.
- Sandtorv H.
Reliability Engineering and System Safety - 1/1/1998
- CiteScore: 9,3 (2020)
Bayesian networks in reliability
- Langseth H.
- Portinale L.
Reliability Engineering and System Safety - 1/1/2007
- Cuartil SJR: Q1
- CiteScore: 9,3 (2020)
- SJR: 0,74 (2007)
- SNIP: 2,203 (2007)
- Categorías SJR: Industrial and Manufacturing Engineering (Q1); Safety, Risk, Reliability and Quality (Q1); Applied Mathematics (Q2)
Decision theoretic troubleshooting of coherent systems
- Langseth H.
- Jensen F.
Reliability Engineering and System Safety - 1/4/2003
- Cuartil SJR: Q1
- CiteScore: 9,3 (2020)
- SJR: 0,414 (2003)
- SNIP: 1,307 (2003)
- Categorías SJR: Industrial and Manufacturing Engineering (Q1); Safety, Risk, Reliability and Quality (Q2); Applied Mathematics (Q3)
Learning similarity measures from data
- Mathisen B.
- Aamodt A.
- Bach K.
- Langseth H.
PROGRESS IN ARTIFICIAL INTELLIGENCE - 1/6/2020
- Cuartil SJR: Q2
- CiteScore: 3,4 (2020)
- SJR: 0,322 (2020)
- SNIP: 0,746 (2020)
- Categorías SJR: Artificial Intelligence (Q2)
- Scopus
- ORCID
- Web of Science
MAP inference in dynamic hybrid Bayesian networks
- Ramos-López D.
- Masegosa A.
- Martínez A.
- Salmerón A.
- Nielsen T.
- Langseth H.
- Madsen A.
PROGRESS IN ARTIFICIAL INTELLIGENCE - 27/6/2017
- Impacto Normalizado por Categoría: 0,228 (2017)
- CiteScore: 3,4 (2020)
- SNIP: 0,943 (2017)
- Categorías SJR: Artificial Intelligence
- Scopus
- ORCID
- OAI-PMH
- Web of Science
Uncertainty bounds for a monotone multistate system
- Langseth H.
- Lindqvist B.
Probability in the Engineering and Informational Sciences - 1/12/1998
- CiteScore: 1,7 (2020)
Latent Classification Models for Binary Data
- Langseth H.
- Nielsen T.
Pattern Recognition - 1/11/2009
- Cuartil SJR: Q1
- Factor Impacto JCR: 2,554 (2009)
- CiteScore: 15,7 (2020)
- SJR: 1,163 (2009)
- SNIP: 2,837 (2009)
- Impacto JCR a 5 años: 3,453
- Categorías JCR: ENGINEERING, ELECTRICAL & ELECTRONIC
- Categorías SJR: Artificial Intelligence (Q1); Computer Vision and Pattern Recognition (Q1); Signal Processing (Q1); Software (Q1)
- Scopus
- ORCID
- Web of Science
Variational Inference over Nonstationary Data Streams for Exponential Family Models †
- Andrés R. Masegosa
- Darío Ramos-López
- Antonio Salmerón
- Helge Langseth
- Thomas D. Nielsen
MATHEMATICS - 3/11/2020
- Cuartil JCR: Q1 (2020)
- Factor Impacto JCR: 2,258 (2023)
- Impacto Normalizado por Categoría: 1,811 (2020)
- Impacto JCR a 5 años: 2,165
- Categorías JCR: MATHEMATICS
- Scopus
- ORCID
- OAI-PMH
- Web of Science
MPE Inference in Conditional Linear Gaussian Networks
- Salmerón A.
- Rumí R.
- Langseth H.
- Madsen A.
- Nielsen T.
Symbolic and Quantitative Approaches To Reasoning With Uncertainty, Ecsqaru 2015 - 1/1/2015
- CiteScore: 1,8 (2020)
- SJR: 0,369 (2015)
- SNIP: 0,708 (2015)
Applications of Bayesian networks in reliability analysis
- Langseth H.
- Portinale L.
Bayesian Network Technologies: Applications and Graphical Models - 1/12/2007
10.4018/978-1-59904-141-4.ch005
Bayesian networks in reliability: The good, the bad, and the ugly
- Langseth H.
Advances in Mathematical Modeling for Reliability - 1/5/2008
Learning hybrid bayesian networks using mixtures of truncated basis functions. Aprendizaje de redes bayesianas híbridas con mixturas de funciones base truncadas
- Inmaculada Pérez-Bernabé
- Antonio Salmerón Cerdán
- Helge Langseth
2015
- Dialnet
Dynamic Bayesian modeling for risk prediction in credit operations
- Borchani H.
- Martínez A.
- Masegosa A.
- Langseth H.
- Nielsen T.
- Salmerón A.
- Fernández A.
- Madsen A.
- Sáez R.
THIRTEENTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (SCAI 2015) - 1/1/2015
- Cuartil SJR: Q3
- Impacto Normalizado por Categoría: 0,286 (2015)
- CiteScore: 0,6 (2020)
- SJR: 0,238 (2015)
- SNIP: 0,429 (2015)
- Categorías SJR: Artificial Intelligence (Q3)
- Scopus
- ORCID
- Web of Science
Parameter learning in MTE networks using incomplete data
- Fernández A.
- Langseth H.
- Nielsen T.
- Salmerón A.
The Fifth European Workshop on Probabilistic Graphical Models, Helsinki, Finland, 12/09/2010 - 1/12/2010
- Categorías SJR: Statistics and Probability
Maximum Likelihood Learning of Conditional MTE Distributions
- Langseth H.
- Nielsen T.
- Rumí R.
- Salmerón A.
SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS - 27/8/2009
- Cuartil JCR: Q2 (2009)
- Impacto Normalizado por Categoría: 1,409 (2009)
- CiteScore: 1,8 (2020)
- SJR: 0,302 (2009)
- SNIP: 0,586 (2009)
- Scopus
- ORCID
- Web of Science
Learning Conditional Distributions Using Mixtures of Truncated Basis Functions
- Pérez-Bernabé I.
- Salmerón A.
- Langseth H.
SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2015 - 1/1/2015
- Impacto Normalizado por Categoría: 0,293 (2015)
- CiteScore: 1,8 (2020)
- SJR: 0,369 (2015)
- SNIP: 0,708 (2015)
Comparative study of event prediction in power grids using supervised machine learning methods
- Hoiem K.W.
- Santi V.
- Torsater B.N.
- Langseth H.
- Andresen C.A.
- Rosenlund G.H.
SEST 2020 - 3rd International Conference on Smart Energy Systems and Technologies - 1/9/2020
10.1109/sest48500.2020.9203025
Probability-based approach for predicting e-commerce consumer behaviour using sparse session data
- Myklatun Ø.
- Thorrud T.
- Nguyen H.
- Langseth H.
- Kofod-Petersen A.
Proceedings of the International ACM Recommender Systems Challenge 2015 - 16/9/2015
- Categorías SJR: Engineering (miscellaneous)
Scalable MAP inference in Bayesian networks based on a Map-Reduce approach
- Ramos-L pez D.o.
- Salmer n A.
- Rum R.
- Mart nez A.M.
- Nielsen T.D.
- Masegosa A.R.
- Langseth H.
- Madsen A.L.
Proceedings of the Eighth International Conference on Probabilistic Graphical Models - 1/1/2016
- Factor Impacto JCR: 5 (2016)
- CiteScore: 6,8 (2020)
- SJR: 1,29 (2016)
- SNIP: 2,222 (2016)
- Impacto JCR a 5 años: 7,649
- Categorías JCR: AUTOMATION & CONTROL SYSTEMS
- Scopus
- ORCID
Inference in hybrid Bayesian networks with mixtures of truncated basis functions
- Langseth H.
- Nielsen T.
- Rumí R.
- Salmerón A.
Proceedings of the 6th European Workshop on Probabilistic Graphical Models, PGM 2012 - 1/12/2012
- Categorías SJR: Statistics and Probability
- Scopus
- ORCID
Parameter estimation in mixtures of truncated exponentials
- Langseth H.
- Nielsen T.
- Rumí R.
- Salmerón A.
Proceedings of the 4th European Workshop on Probabilistic Graphical Models, PGM 2008 - 1/12/2008
- Categorías SJR: Statistics and Probability
Prediction intervals: Split normal mixture from quality-driven deep ensembles
- Salem T.S.
- Langseth H.
- Ramampiaro H.
Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, UAI 2020 - 1/1/2020
Este autor no tiene patentes.
A Divide and Conquer Approach for Solving Structural Causal Models
- Bjøru, Anna Rodum
- Cabañas De Paz, Rafael
- Langseth, Helge
- Salmerón Cerdán, Antonio
12th International Conference on Probabilistic Graphical Models (PGM'2024) - 2024
Índice h
Scopus: 18
Web of Science: 12
Índice i10
Scopus: 33
Web of Science: 18
Perfiles de autor
-
ORCID
-
Scopus Author ID
-
Dialnet id
Proyectos de investigación en la UAL
-
Acrónimo PID2022-139293NB-C31Desde: 1 de septiembre de 2023Hasta: 31 de agosto de 2026Financiado por: Ministerio de Ciencia e InnovaciónImporte de financiación: 150.125,00 EURRol: Equipo de trabajo
-
Acrónimo TIN2016-77902-C3-3-PDesde: 30 de diciembre de 2016Hasta: 29 de diciembre de 2019Financiado por: Ministerio de Economía, Industria y CompetitividadImporte de financiación: 143.506,00 EURRol: Equipo de trabajo
-
Acrónimo TIN2010-20900-C04-02Desde: 1 de enero de 2011Hasta: 31 de diciembre de 2013Financiado por: MECImporte de financiación: 64.493,00 EURRol: Investigador